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Abstract. A theoretical study of classical aspects, i.e.: density, current density, and average 

speed of electrons tunnelling through a quantum dot (QD) via a simple driven lattice gas model 

have been carried out. The study is conducted by considering a resemblance between the 

components of the QD with the components of the totally asymmetric simple exclusion process 

(TASEP) that consists of only a single site and open boundary conditions. The former consists 

of a source, an island, and a drain, which corresponds respectively to the left reservoir (i = 0), 

site i = 1, and the right reservoir (i = 2) of the latter. Explicit expressions of the density, current 

densities, and average speed for electrons tunnelling through the QD in the classical regime are 

obtained. At the steady state, the density of electrons tunnelling through the dot is 0.5 and the 

current density becomes v/2, where v is the speed of the electrons. Furthermore, the speed of the 

electrons may be obtained as functions of temperature and the difference between gate and 

source-drain potentials. For very low temperatures, the speed of electrons rapidly goes to zero 

pointing to the occurrence of Coulomb blockade. 

1. Introduction 

Nowadays, nanomaterial such as quantum dot (QD) have attracted much attention because of their 

superior electronic, optical, and magnetic properties due to confinement effects [1,2]. A confinement of 

an electron in all its three spatial coordinates is designated as a QD. A QD is a mesoscopic system which 

resembles an atom although it is tens or hundreds times bigger than an actual atom, e.g. the Zeeman 

Effect and discrete energy levels [3], hence entitling the QD as an artificial atom [4]. Another interesting 

feature is that its physical properties depend on the voltage applied to the dot, whereas an atom depends 

upon its valence electrons. The QD has been a subject of various applications including optical and 

optoelectronic devices [5,6], quantum computing [7], DNA testing [8,9], three dimensional (3D) 

imaging [10], and displays [11,12].  

There are two mechanisms used in QD, namely Coulomb blockade (Figure 1A) and single electron 

tunnelling (SET) [Figure 1B] [13,14]. Coulomb blockade occurs when the electrons inside the dot create 

a strong Coulomb repulsion preventing other electrons to enter the dot. SET is a tunnelling mechanism 

where a single electron at a time may tunnel through the dot which occurs by varying the gate voltage, 

Vg. We may think of three components for the aforementioned mechanisms, i.e. a source, an island, and 

a drain (Figure 1). The source and drain are reservoirs of electrons which are going into and out of the 

dot (island), respectively. The island is where the electron is trapped inside the dot. The source and drain 

are associated to their respective electrochemical potentials, i.e.: source and drain. Both chemical 
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potentials are connected through the source-drain potential, Vsd, that is, eVsd = (source - drain), where e is 

the electron unit of charge. The Coulomb blockade and SET are realized by differences in values 

between source, drain, and (N), where the latter is the chemical potential of N electrons inside the island.  

 

 

 

Figure 1. The energy diagram of a QD. (A) is the Coulomb blockade and (B) is the SET. 

 

 

A standard mathematical model which can be utilized to study many physical properties of 

dynamical systems is the totally asymmetric simple exclusion process (TASEP) in one dimension (1D). 

This is a simple driven lattice gas model where hard-core particles occupying a discrete lattice sites, i  

L, may jump to their respective right-nearest neighbour sites, (i + 1)  L, provided that the right-nearest 

neighbour sites are not occupied by any other (hard-core) particle. The jumping of particles is defined 

by hopping rules, which usually takes the sequential or parallel up-dating dynamics. The TASEP is also 

equipped with boundary conditions, which may be open or periodic. Furthermore, the model is a 

renowned particle hopping model [15] which is employed to investigate various transport phenomena, 

such as protein synthesis [16], motor protein in organism [17], the track of a group of insects [18], and 

road traffic congestions [19]. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. The TASEP that consists of only a single site, i.e.: N = 1. 

 

The dark vertical lines are lattice sites labelled by i = 0, 1, 2. Site i = 0 and i = 2 are reservoirs of particles 

where a hard-core particle (pink coloured dot) jump into and out of the system, i = N = 1 (blue dashed 

rectangular lines), respectively. A hard-core particle may enter site i = 1 with an input rate of (t) and 

exit the site with an output rate of (t) [green arrows]. 
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Here, the TASEP which consists of only a single site (Figure 2) is utilized to study the dynamics 

of electrons tunnelling through the dot in the SET. This may be considered as the simplest arrangement 

of the model where only one site is used, i.e.: i = N = 1, with N is the total number of sites. The single 

site is attached to two reservoirs at each end of the site which indicates an open boundary condition. The 

left (right) reservoir, viz.: i = 0 (i = 2) allows particles to jump to (out of) the system (site i = 1) with 

input rate (t) [output rate (t)].  

 In this case, we present an application of TASEP consisting of only a few sites, e.g.: 1 ≤ N ≤ 3 

which is rarely investigated other than being used to confirm physical theories, let alone applied to model 

a physical system. It is necessary to emphasize here that this study offers an alternative approach in 

investigating classical aspects of the dynamics of a mesoscopic system, i.e. QD, through a simple 

classical dynamical model. However naive it may be, this study brings a new perspective in the 

relationship between dynamical models providing insights of one model (SET) through the other 

(TASEP with a single site), or vice versa. The results of explicit expressions for the average speed, 

density, and current densities of electrons tunnelling through the dot are worth scientific exploration and 

have not been reported before. This study enriches the many methods in describing the dynamics of 

electrons inside QD. 

 

2. The Relationship 

We may observe a physical resemblance of the TASEP with a single site and the two mechanisms in 

QD (Table 1). The system (site i = 1) of the TASEP represents the dot (island), the reservoirs of the 

TASEP at site i = 0 and i = 2 represent the source and drain, respectively. 

 

Table 1. A connection between the components of the TASEP with a single site and QD. 

No. TASEP with a single site connection QD 

1. 0  source 

2. 1  island 

3. 2  drain 

4. 
a particle occupies site  

i = 1 
 an electron inside the dot 

5. 
 a particle jumps through site  

i = 1 
 

an electron tunnelling the 

dot 

 

 

The single particle occupation in site i = 1 of the TASEP is due to the hard-core inter-atomic 

potential between particles. This potential is obtained via a purely infinite repulsive potential between 

the centres of two particles until a certain inter-atomic distance. Beyond this distance, the particles are 

non-interacting. Hence, no other particle may occupy site i = 1 if the site is occupied by a particle. 

However, the nature of the Coulomb blockade and SET is completely different from that of the hard-

core potential. In the QD, the movement or confinement of an electron is caused by chemical potential 

differences between the source, island, and drain, through the applied voltages. However, the two 

models look similar in the sense that there is only a single particle (electron) that may enter or exit the 

site (dot). Hence, the confinement (tunnelling) of a single electron in the dot is somewhat similar to a 

classical particle occupying (jumping out of) the lattice sites in the TASEP. Therefore, a connection can 

be constructed between TASEP, Coulomb blockade, and SET. 

The intended relationship is realized in two stages. First, a relationship between the hard-core lattice 

gas model [20], the Coulomb blockade, and SET is constructed. Here, two species of hard-core particles 

are used, i.e. monomer and dimer. A monomer is a particle that excludes its own site, whereas a dimer 

is a particle that excludes its own and its right-nearest neighbour sites. Thus, the monomer corresponds 

to an electron that is confined in the dot, while the dimer corresponds to an electron that is tunnelling 

into and out of the dot. The results are static densities of the monomer and dimer in terms of the applied 

voltages of the QD. A physical understanding of these densities may be acquired by connecting them to 
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the TASEP with a single site in the second stage of the relationship. At this point, the monomer is 

associated to the particle occupying site i = 1 and the dimer is associated to the particle going into or out 

of site i = 1 of the TASEP. The densities of the monomer and dimer can then be associated to the density 

and current density of the TASEP, respectively [21].  Hence, giving the final results of the density of an 

electron confined in the dot and the current density of the electron tunnelling through the dot (Table 1). 

 

3. Density, Current Density, and Average Speed of Electrons Tunnelling through a QD 

The Following the above connection, we may obtain a continuity equation, i.e. [22]: 

 

𝜕𝜌(𝑡)

𝜕𝑡
= 𝐽st(𝑡) − 𝐽dd(𝑡), (1) 

 

where (t) is the density of an electron in the dot at time t which gives the average occupancy of electrons 

in the dot,  

 

𝐽st(𝑡) = exp [
𝑒

𝑘B𝑇
(𝑉g − 𝑉sd)] 𝜌s(𝑡)(1 − 𝜌(𝑡)), (2) 

 

is the current density of the electron entering the dot from the source, s(t) is the density of electrons in 

the source at time t, 

 

𝐽dd(𝑡) = exp [
𝑒

𝑘B𝑇
(𝑉g − 𝑉sd)] 𝜌(𝑡)(1 − 𝜌d(𝑡)), (3) 

 

is the current density of the electron exiting the dot to the drain, and d(t) is the density of electrons in 

the drain at time t. It may be observed that the current densities of the electron depend upon Vg and Vsd. 

Furthermore, by setting the input and output rates as  

 

𝛼(𝑡) = exp [
𝑒

𝑘B𝑇
(𝑉g − 𝑉sd)] 𝜌s(𝑡), (4) 

 

and 

 

𝛽(𝑡) = exp [
𝑒

𝑘B𝑇
(𝑉g − 𝑉sd)] (1 − 𝜌d(𝑡)), (5) 

 

respectively, we may modify equations (2) and (3) to become 

 

𝐽st(𝑡) = 𝛼(𝑡)[1 − 𝜌(𝑡)], (6) 

 

and 

 

𝐽dd(𝑡) = 𝛽(𝑡)𝜌(𝑡), (7) 

 

respectively. Equations (6) and (7) give a simpler form of the current densities of electrons that depend 

explicitly only on the density of electrons in the dot and the input and output rates. Here, the dependency 
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of the current densities upon time, t, is through the density and the input and output rates.  In order that 

the current density of electrons only depends upon the applied voltages, we may set s(t) = 1.0 and d(t) 

= 0.0. This indicates that at any time t, the source will always be filled with electrons and the drain will 

always be empty. Thus we may obtain the average speed of electrons tunnelling through the dot as 

 

𝑣 = exp [
𝑒

𝑘B𝑇
(𝑉g − 𝑉sd)],  (8) 

 

which is time-independent and depends upon the temperature and the difference between the applied 

potentials. Hence, equations (6) and (7) becomes 

 

𝐽st(𝑡) = 𝑣[1 − 𝜌(𝑡)],     (9) 

 

and 

 

𝐽dd(𝑡) = 𝑣𝜌(𝑡),   (10) 

 

where now the time dependency of the current densities only comes from the density of the electron in 

the dot. Equations (1), (9), and (10) determine the evolution of the density of electrons in the dot. This 

indicates that the density of electrons at any time may be obtained via the current densities by formally 

solving equation (1).This may be attained by inserting equations (9) and (10) into equation (1), giving: 

 

𝜕𝜌

𝜕𝑡
= 𝑣[1 − 𝜌] − 𝑣𝜌 = 𝑣[1 − 2𝜌]  

 

or 

 

∫
d𝜌

1 − 2𝜌
= ∫ 𝑣

𝑡

𝑡0

d𝑡.  

 

Solving the LHS of the above integral via a substitution method produces an explicit expression for the 

density as a function of time, viz.: 

 

𝜌(𝑡) =
1

2
[1 − 𝑒−2𝑣(𝑡−𝑡0)].   (11) 

 

Furthermore, substituting equation (11) back into Equations (9) and (10), yields 

 

𝐽st(𝑡) =
𝑣

2
[1 + 𝑒−2𝑣(𝑡−𝑡0)], (12) 
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and 

 

𝐽dd(𝑡) =
𝑣

2
[1 − 𝑒−2𝑣(𝑡−𝑡0)]. (13) 

 

Equations (11), (12), and (13) are a set of explicit equations that describe the dynamics of the electrons 

moving through the dot.  

 

 
 

Figure 3. The average speed of electrons as functions of the applied potential differences, Vg – Vsd, at 

various temperatures, T. 

First, we may plot the average speed of electrons in equation (8) against the difference of the applied 

potentials with temperature variations. This is given in Figure 3. The classical limit is obtained if the 

temperature is very high, i.e. T  , such that v  1, which is shown as a straight (blue) line. In this 

regime, the thermal fluctuations dominate over quantum events such that the speed of electrons is not 

affected by Vg - Vsd. As the temperature is decreased the speeds become an exponential form with respect 

to Vg - Vsd consistent with Equation (8) and passing through a vertical line of Vg = Vsd at v = 1. For the 

region of Vg < Vsd, as Vg becomes smaller (compared to a constant value of Vsd) v reduce to zero indicating 

the occurrence of Coulomb blockade. Accordingly, the density and current densities of electrons in 

Equations (11) - (13) become   = Jst = Jdd = 0.0. This means that an equilibrium condition is achieved 

where an electron may not enter the island (dot). Moreover reducing the temperature increases the region 

of Vg – Vsd where the Coulomb blockade may occur, hence shifting the ‘switch’ between Coulomb 

blockade and electrons tunnelling or vice versa to smaller values of |Vg – Vsd |. For very low temperature, 

the ‘switch’ is located at Vg = Vsd, i.e. for Vg < Vsd, v = 0 (Coulomb blockade), and Vg > Vsd, v   

(electrons tunnelling). For the region of Vg > Vsd only electron tunnelling takes place as v  0. Lowering 

the temperature in this region increases the speed of the electrons and at very low temperatures v  . 

However, as v  , the current densities tend to infinite as well (Jst, Jdd  ), but the density remains 

finite ( = 0.5).    

For some long evolution time, i.e. t  , Equations (11) – (13) may achieve a steady state condition 

where the density does not depend again upon time, i.e.:  = 0.5, and Jst = Jdd = v/2 does not vanish, as 

shown in Figure 4. This implies that at steady state the dot (island) has half a chance in average of being 
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occupied by an electron or being empty. This is of course in accordance with the SET where electrons 

may alternately enter and exit the dot through the source and drain, respectively. Hence, the SET may 

be thought of being in a non-equilibrium steady state (NESS) condition with a non-vanishing current of 

v/2. It may also be observed in Figure 4(a) that increasing the speed of the electrons tunnelling through 

the dot causes the system to reach NESS faster. 

 

 

 
Figure 4. (a) The density of electron in the dot, , (b) the current density of the electron entering the dot 

from the source, Jst, and (c) the current density of the electron exiting the dot to the drain, Jdd, as  

functions of time for various speeds, v. 

 

4. Conclusion 

Explicit classical expressions of the density, current densities, and the average speed of electrons 

tunnelling through a QD are obtained. This may be realized using a relationship between the TASEP 

with a single site and the QD through the hard-core lattice gas model.  The density and current densities 

of electrons are obtained via the density and current density of the hard-core particles of the TASEP 

with a single site. In steady state, the Coulomb blockade is obtained when the average speed of the 

electrons is zero, i.e. for low temperatures, such that  = Jst = Jdd = 0. SET is an NESS which is attained 

for  = 0.5 and Jst = Jdd = v/2, respectively. 
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